Asymptotic distributions of Neumann problem for Sturm-Liouville equation
Authors
Abstract:
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
similar resources
asymptotic distributions of neumann problem for sturm-liouville equation
in this paper we apply the homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of sturm-liouville type on $[0,pi]$ with neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued sign-indefinite number of $c^{1}[0,pi]$ and $lambda$ is a real parameter.
full textOn the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point
In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.
full textThe Asymptotic Form of Eigenvalues for a Class of Sturm-Liouville Problem with One Simple Turning Point
The purpose of this paper is to study the higher order asymptotic distributions of the eigenvalues associated with a class of Sturm-Liouville problem with equation of the form w??=(?2f(x)?R(x)) (1), on [a,b, where ? is a real parameter and f(x) is a real valued function in C2(a,b which has a single zero (so called turning point) at point 0x=x and R(x) is a continuously differentiable function. ...
full textExtremal Eigenvalues for a Sturm-Liouville Problem
We consider the fourth order boundary value problem (ry′′)′′+(py′)′+ qy = λwy, y(a) = y′(a) = y(b) = y′(b) = 0, which is used in a variety of physical models. For such models, the extremal values of the smallest eigenvalue help answer certain optimization problems, such as maximizing the fundamental frequency of a vibrating elastic system or finding the tallest column that will not buckle under...
full textSolution of Sturm--Liouville Problems Using Modified Neumann Schemes
The main purpose of this paper is to describe the extension of the successful modified integral series methods for Schrödinger problems to more general Sturm-Liouville eigenvalue problems. We present a robust and reliable modified Neumann method which can handle a wide variety of problems. This modified Neumann method is closely related to the second-order Pruess method, but provides for higher...
full textInverse Sturm-Liouville problem with discontinuity conditions
This paper deals with the boundary value problem involving the differential equation begin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x), a_1 , a_2$ are rea...
full textMy Resources
Journal title
volume 2 issue 1
pages 19- 25
publication date 2014-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023